Bài tập Toán 7 chương 1 | Daohongdonvenus.com

Bài tập Toán 7 chương 1 tổng hợp toàn bộ các dạng toán, bài tập trong Chương I: Số hữu tỉ, số thực môn Toán lớp 7, giúp các em hệ thống lại kiến thức nhanh chóng, chuẩn bị thật tốt cho kỳ thi cuối kỳ đạt kết quả cao.

Ôn tập chương 1 Toán 7 giúp các em được làm quen với các dạng bài tập về tập hợp các số hữu tỉ, cộng trừ số hữu tỉ, nhân chia số hữu tỉ, giá trị tuyệt đối của một số hữu tỉ, cộng trừ nhân chia số thập phân. Ngoài ra, các em có thể tham khảo thêm một số tài liệu như: 408 bài tập trắc nghiệm số hữu tỉ và giá trị tuyệt đối, một số bài toán về đại lượng tỉ lệ nghịch, để luyện giải đề thật tốt. Chúc các em học tập thật tốt.

Bài tập về tập hợp Q các số hữu tỉ

Dạng 1. Sử dụng các kí hiệu in, notin, subset, mathbf{N}, mathbf{Z}, mathbf{Q}.

Bài 1 . Điền kí hiệu (in, notin, subset) thích hợp vào ô vuông:

left.begin{array}{llllll}-5 & square mathrm{N} ; & -5 & square & -5 & mathrm{Q} ; & -frac{6}{7} & mathrm{Z} ; & -frac{6}{7}end{array}right] mathrm{Q}

Bài 2 . Điền các kí hiệu mathrm{N}, mathrm{Z}, mathrm{Q}vào ô trống cho hợp nghĩa (điền tất cả các khả năng có thể):

-3 in square ; quad 10 in square ; quad frac{2}{11} in square ; quad frac{-3}{5} in

Dạng 2. Biểu diễn số hữu tỉ.

Bài 3 . Trong các phân số sau, những phân số nào biểu diễn số hữu tỉ frac{2}{-5} ?

frac{-8}{20} ; frac{9}{-12} ; quad frac{-10}{25} ; quad frac{6}{-15} ; quad frac{9}{-15}

Bài 4. Biểu diễn số hữu tỉ frac{2}{-5} trên trục số.

Dạng 3. So sánh số hữu tỉ.

Bài 5. So sánh các số hữu tỉ sau:

a) mathrm{x}=frac{-25}{35} và mathrm{y}=frac{444}{-777};

b) mathrm{x}=-2 frac{1}{5} và mathrm{y}=frac{110}{-50};

c) mathrm{x}=frac{17}{20} và mathrm{y}=0,75

Bài 6. So sánh các số hữu tỉ sau:

a) frac{1}{2010} và frac{-7}{19};

b) frac{-3737}{4141} và frac{-37}{41};

c) frac{497}{-499} và frac{-2345}{2341}

Bài 7. Cho hai số hữu ti frac{mathrm{a}}{mathrm{b}}, frac{mathrm{c}}{mathrm{d}}(mathrm{b}>0, mathrm{~d}>0). Chứng minh rằng frac{mathrm{a}}{mathrm{b}}<frac{mathrm{c}}{mathrm{d}} nếu mathrm{ad}<mathrm{bc} và ngược lại.

Bài 8. Chúng minh rằng nếu frac{a}{b}<frac{c}{d}(b>0, d>0) thì: frac{a}{b}<frac{a+c}{b+d}<frac{c}{d}.

Dạng 4. Tìm điều kiện để số hữu tỉ mathbf{x}=frac{mathrm{a}}{mathrm{b}} là số hữu tỉ dương, âm, 0.

Bài 9. Cho số hữu tỉ mathrm{x}=frac{mathrm{m}-2011}{2013}. Với giá trị nào của m thì :

a) x là số dương.

b) x là số âm.

c) x không là số dương cũng không là số âm

Bài 10. Cho số hữu tỉ mathrm{x}=frac{20 mathrm{~m}+11}{-2010}. Với giá trị nào của m thì:

a) xlà số dương.

b) x là số âm.

Dang 5. Tìm điều kiện để số hữu tỉ mathbf{x}=frac{mathrm{a}}{mathrm{b}} là một số nguyên.

Bài 11. Tìm số nguyên a để số hữu tỉ mathrm{x}=frac{-101}{mathrm{a}+7} là một số nguyên.

Bài tập Cộng trừ số hữu tỉ

Dạng 1. Cộng, trừ hai số hữu tỉ.

Bài 1. Tính :

a) frac{-5}{13}+frac{-7}{13};

b) frac{-3}{14}+frac{2}{21}

c) frac{1313}{1515}+frac{-1011}{5055}.

Bài 2. Tính:

a) frac{2}{15}-frac{7}{10}

b) (-5)-frac{2}{7}

c) 2,5-left(-frac{3}{4}right)

Dạng 2. Viết một số hữu tỉ dưới dạng tổng hoặc hiệu của hai số hữu tỉ.

Bài 3. Hãy viết số hữu tỉ frac{-7}{20} dưới dạng sau:

a) Tổng của hai số hữu tỉ âm.

b) Hiệu của hai số hữu tỉ dương.

Bài 4. Viết số hữu tỉ frac{-1}{5} dưới dạng tổng của hai số hữu tỉ âm.

Dạng 3. Tìm số chưa biết trong một tổng hoặc một hiệu.

Bài 5. Tìm x, biết:

a) x+frac{1}{12}=frac{-3}{8};

b) x-2=frac{-5}{9}

c) frac{2}{15}-x=frac{-3}{10};

d) -x+frac{4}{5}=frac{1}{2}

Bài 6. Tính tổng x+ y biết:mathrm{x}-frac{5}{12}=frac{3}{8} và frac{223}{669}-mathrm{y}=frac{11}{88}.

Bài 7 . Tìm x biết:

a) x+frac{1}{3}=frac{2}{5}-left(-frac{1}{3}right)

b) frac{3}{7}-x=frac{1}{4}-left(-frac{3}{5}right)

………………

Tải file tài liệu để xem thêm nội dung chi tiết